Pem: a general statistical approach for identifying differentially expressed genes in time-course cDNA microarray experiment without replicate.

نویسندگان

  • Xu Han
  • Wing-Kin Sung
  • Lin Feng
چکیده

Replication of time series in microarray experiments is costly. To analyze time series data with no replicate, many model-specific approaches have been proposed. However, they fail to identify the genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal expression patterns is difficult when the dynamics of gene expression in the experiment is poorly understood. We propose a method called PEM (Partial Energy ratio for Microarray) for the analysis of time course cDNA microarray data. In the PEM method, we assume the gene expressions vary smoothly in the temporal domain. This assumption is comparatively weak and hence the method is general enough to identify genes expressed in unexpected patterns. To identify the differentially expressed genes, a new statistic is developed by comparing the energies of two convoluted profiles. We further improve the statistic for microarray analysis by introducing the concept of partial energy. The PEM statistic is incorporated into the permutation based SAM framework for significance analysis. We evaluated the PEM method with an artificial dataset and two published time course cDNA microarray datasets on yeast. The experimental results show the robustness and the generality of the PEM method. It outperforms the previous versions of SAM and the spline based EDGE approaches in identifying genes of interest, which are differentially expressed in various manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Statistical Approach for Identifying Differentially Expressed Genes in Time-course Cdna Microarray Experiment without Replicate

Replication of time series in microarray experiments is costly. To analyze time series data with no replicate, many model-specific approaches have been proposed. However, they fail to identify the genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal expression patterns is difficult when the dynamics of gene expression in the experiment is poorly unde...

متن کامل

A global approach to identify differentially expressed genes in cDNA (two-color) microarray experiments

MOTIVATION Currently most of the methods for identifying differentially expressed genes fall into the category of so called single-gene-analysis, performing hypothesis testing on a gene-by-gene basis. In a single-gene-analysis approach, estimating the variability of each gene is required to determine whether a gene is differentially expressed or not. Poor accuracy of variability estimation make...

متن کامل

Statistical tests for identifying differentially expressed genes in time-course microarray experiments

MOTIVATION Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data. RESULTS We...

متن کامل

Comparison of different methodologies to identify differentially expressed genes in two-sample cDNA microarrays

A two-sample microarray design aims at identifying genes expressed differentially in two-sample cDNA arrays. A two-sample experiment is a commonly used design to compare relative mRNA abundance between two different samples. Several statistical techniques are available for such designs. For the identification of differentially expressed genes, four methods were compared: a fold test, a t-test [...

متن کامل

Rank products : a simple , yet powerful , new method to detect differentially regulated genes in replicated microarray experiments q

One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially expressed genes that does not originate from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational systems bioinformatics. Computational Systems Bioinformatics Conference

دوره   شماره 

صفحات  -

تاریخ انتشار 2006